
 

119

 

C H A P T E R

 

6

 

Methods

 

T

 

HIS

 

 chapter discusses several aspects of method design: how to treat parameters
and return values, how to design method signatures, and how to document methods.
Much of the material in this chapter applies to constructors as well as to methods.
Like Chapter 5, this chapter focuses on usability, robustness, and flexibility.

 

Item 23: Check parameters for validity

 

Most methods and constructors have some restrictions on what values may be
passed into their parameters. For example, it is not uncommon that index values
must be nonnegative and object references must be non-null. You should clearly
document all such restrictions and enforce them with checks at the beginning of the
method body. This is a special case of the general principle, and you should attempt
to detect errors as soon as possible after they occur. Failing to do so makes it less
likely that an error will be detected and makes it harder to determine the source of an
error once it has been detected.

If an invalid parameter value is passed to a method and the method checks its
parameters before execution, it will fail quickly and cleanly with an appropriate
exception. If the method fails to check its parameters, several things could happen.
The method could fail with a confusing exception in the midst of processing.
Worse, the method could return normally but silently compute the wrong result.
Worst of all, the method could return normally but leave some object in a compro-
mised state, causing an error at some unrelated point in the code at some undeter-
mined time in the future.

For public methods, use the Javadoc 

 

@throws

 

 tag to document the exception
that will be thrown if a restriction on parameter values is violated (Item 44). Typi-
cally the exception will be 

 

IllegalArgumentException

 

, 

 

IndexOutOfBoundsEx-

ception

 

, or 

 

NullPointerException

 

 (Item 42). Once you’ve documented the

 

methods.fm  Page 119  Tuesday, May 15, 2001  9:02 AM



 

CHAPTER 6    METHODS

 

120

 

restrictions on a method’s parameters and you’ve documented the exceptions that
will be thrown if these restrictions are violated, it is a simple matter to enforce the
restrictions. Here’s a typical example:

 

/**
 * Returns a BigInteger whose value is (this mod m).  This method
 * differs from the remainder method in that it always returns a
 * nonnegative BigInteger.
 *
 * @param  m the modulus, which must be positive.
 * @return this mod m.
 * 

 

@throws ArithmeticException if m <= 0.

 

 */
public BigInteger mod(BigInteger m) {
    

 

if (m.signum() <= 0)

 

        

 

throw new ArithmeticException("Modulus not positive");

 

    ... // Do the computation
}

 

For an unexported method, you as the package author control the circum-
stances under which the method is called, so you can and should ensure that only
valid parameter values are ever passed in. Therefore nonpublic methods should
generally check their parameters using 

 

assertions

 

 rather than normal checks. If
you are using a release of the platform that supports assertions (1.4 or later), you
should use the 

 

assert

 

 construct; otherwise you should use a makeshift assertion
mechanism.

It is particularly important to check the validity of parameters that are not used
by a method but are stored away for later use. For example, consider the static fac-
tory method on page 86, which takes an 

 

int

 

 array and returns a 

 

List

 

 view of the
array. If a client of this method were to pass in 

 

null

 

, the method would throw a

 

NullPointerException

 

 because the method contains an explicit check. If the
check had been omitted, the method would return a reference to a newly created

 

List

 

 instance that would throw a 

 

NullPointerException

 

 as soon as a client
attempted to use it. By that time, unfortunately, the origin of the 

 

List

 

 instance
might be very difficult to determine, which could greatly complicate the task of
debugging.

Constructors represent a special case of the principle that you should check
the validity of parameters that are to be stored away for later use. It is very impor-
tant to check the validity of parameters to constructors to prevent the construction
of an object that violates class invariants.

 

methods.fm  Page 120  Tuesday, May 15, 2001  9:02 AM



 

ITEM 23: CHECK PARAMETERS FOR VALIDITY

 

121

 

There are exceptions to the rule that you should check a method’s parameters
before performing its computation. An important exception is the case in which
the validity check would be expensive or impractical 

 

and

 

 the validity check is per-
formed implicitly in the process of doing the computation. For example, consider
a method that sorts a list of objects, such as 

 

Collections.sort(List)

 

. All of the
objects in the list must be mutually comparable. In the process of sorting the list,
every object in the list will be compared to some other object in the list. If the
objects aren’t mutually comparable, one of these comparisons will throw a 

 

Class-

CastException

 

, which is exactly what the sort method should do. Therefore there
would be little point in checking ahead of time that the elements in the list were
mutually comparable. Note, however, that indiscriminate application of this tech-
nique can result in a loss of failure atomicity (Item 46).

Occasionally, a computation implicitly performs the required validity check
on some parameter but throws the wrong exception if the check fails. That is to
say, the exception that the computation would naturally throw as the result of an
invalid parameter value does not match the exception that you have documented
the method to throw. Under these circumstances, you should use the 

 

exception
translation

 

 idiom described in Item 43 to translate the natural exception into the
correct one.

Do not infer from this item that arbitrary restrictions on parameters are a good
thing. On the contrary, you should design methods to be as general as it is practi-
cal to make them. The fewer restrictions that you place on parameters, the better,
assuming the method can do something reasonable with all of the parameter val-
ues that it accepts. Often, however, some restrictions are intrinsic to the abstrac-
tion being implemented.

To summarize, each time you write a method or constructor, you should think
about what restrictions exist on its parameters. You should document these restric-
tions and enforce them with explicit checks at the beginning of the method body.
It is important to get into the habit of doing this; the modest work that it entails
will be paid back with interest the first time a validity check fails.

 

methods.fm  Page 121  Tuesday, May 15, 2001  9:02 AM



 

CHAPTER 6    METHODS

 

122

 

Item 24: Make defensive copies when needed

 

One thing that makes the Java programming language such a pleasure to use is that it
is a 

 

safe language

 

. This means that in the absence of native methods it is immune to
buffer overruns, array overruns, wild pointers, and other memory corruption errors
that plague unsafe languages such as C and C++. In a safe language it is possible to
write classes and to know with certainty that their invariants will remain true, no
matter what happens in any other part of the system. This is not possible in lan-
guages that treat all of memory as one giant array.

Even in a safe language, you aren’t insulated from other classes without some
effort on your part. 

 

You must program defensively with the assumption that
clients of your class will do their best to destroy its invariants.

 

 This may actu-
ally be true if someone tries to break the security of your system, but more likely
your class will have to cope with unexpected behavior resulting from honest mis-
takes on the part of the programmer using your API. Either way, it is worth taking
the time to write classes that are robust in the face of ill-behaved clients.

While it is impossible for another class to modify an object’s internal state
without some assistance from the object, it is surprisingly easy to provide such
assistance without meaning to do so. For example, consider the following class,
which purports to represent an immutable time period:

 

// Broken "immutable" time period class

 

public final class Period {
    private final Date start;
    private final Date end;

    /**
     * @param  start the beginning of the period.
     * @param  end the end of the period; must not precede start.
     * @throws IllegalArgumentException if start is after end.
     * @throws NullPointerException if start or end is null.
     */
    public Period(Date start, Date end) {
        if (start.compareTo(end) > 0)
            throw new IllegalArgumentException(start + " after "
                                               + end);
        this.start = start;
        this.end   = end;
    }

    public Date start() {
        return start;
    }

 

methods.fm  Page 122  Tuesday, May 15, 2001  9:02 AM



 

ITEM 24: MAKE DEFENSIVE COPIES WHEN NEEDED

 

123

 

    public Date end() {
        return end;
    }

    ...  // Remainder omitted
}

 

At first glance, this class may appear to be immutable and to enforce the
invariant that the start of a period does not follow its end. It is, however, easy to
violate this invariant by exploiting the fact that 

 

Date

 

 is mutable:

 

// Attack the internals of a Period instance

 

Date start = new Date();
Date end = new Date();
Period p = new Period(start, end);
end.setYear(78);  

 

// Modifies internals of p!

 

To protect the internals of a 

 

Period

 

 instance from this sort of attack, 

 

it is
essential to make a 

 

defensive copy

 

 of each mutable parameter to the construc-
tor

 

 and to use the copies as components of the 

 

Period

 

 instance in place of the
originals:

 

// Repaired constructor - makes defensive copies of parameters

 

public Period(Date start, Date end) {
    this.start = new Date(start.getTime());
    this.end   = new Date(end.getTime());

    if (this.start.compareTo(this.end) > 0)
      throw new IllegalArgumentException(start +" after "+ end);
}

 

With the new constructor in place, the previous attack will have no effect on
the 

 

Period

 

 instance. Note that 

 

defensive copies are made 

 

before

 

 checking the
validity of the parameters (Item 23), and the validity check is performed on
the copies rather than on the originals.

 

 While this may seem unnatural, it is
necessary. It protects the class against changes to the parameters from another
thread during the “window of vulnerability” between the time the parameters are
checked and the time they are copied.

Note also that we did not use 

 

Date

 

’s 

 

clone

 

 method to make the defensive cop-
ies. Because 

 

Date

 

 is nonfinal, the 

 

clone

 

 method is not guaranteed to return an
object whose class is 

 

java.util.Date

 

; it could return an instance of an untrusted
subclass specifically designed for malicious mischief. Such a subclass could, for

 

methods.fm  Page 123  Tuesday, May 15, 2001  9:02 AM



 

CHAPTER 6    METHODS

 

124

 

example, record a reference to each instance in a private static list at the time of its
creation and allow the attacker access to this list. This would give the attacker free
reign over all instances. To prevent this sort of attack, 

 

do not use the 

 

clone

 

method to make a defensive copy of a parameter whose type is subclassable
by untrusted parties.

 

While the replacement constructor successfully defends against the previous
attack, it is still possible to mutate a 

 

Period

 

 instance because its accessors offer
access to its mutable internals:

 

// Second attack on the internals of a Period instance

 

Date start = new Date();
Date end = new Date();
Period p = new Period(start, end);
p.end().setYear(78);  

 

// Modifies internals of p!

 

To defend against the second attack, merely modify the accessors to 

 

return
defensive copies of mutable internal fields

 

:

 

// Repaired accessors - make defensive copies of internal fields

 

public Date start() {
    return (Date) start.clone();
}

public Date end() {
    return (Date) end.clone();
}

 

With the new constructor and the new accessors in place, 

 

Period

 

 is truly
immutable. No matter how malicious or incompetent a programmer, there is sim-
ply no way he can violate the invariant that the start of a period does not follow its
end. This is true because there is no way for any class other than 

 

Period

 

 itself to
gain access to either of the mutable fields in a 

 

Period

 

 instance. These fields are
truly encapsulated within the object.

Note that the new accessors, unlike the new constructor, do use the 

 

clone

 

method to make defensive copies. This is acceptable (although not required), as
we know with certainty that the class of 

 

Period

 

’s internal 

 

Date

 

 objects is

 

java.util.Date

 

 rather than some potentially untrusted subclass.
Defensive copying of parameters is not just for immutable classes. Anytime

you write a method or constructor that enters a client-provided object into an
internal data structure, think about whether the client-provided object is poten-
tially mutable. If it is, think about whether your class could tolerate a change in

 

methods.fm  Page 124  Tuesday, May 15, 2001  9:02 AM



 

ITEM 24: MAKE DEFENSIVE COPIES WHEN NEEDED

 

125

 

the object after it was entered into the data structure. If the answer is no, you must
defensively copy the object and enter the copy into the data structure in place of
the original. For example, if you are considering using a client-provided object
reference as an element in an internal 

 

Set

 

 instance or as a key in an internal 

 

Map

instance, you should be aware that the invariants of the set or map would be
destroyed if the object were modified after it were inserted.

The same is true for defensive copying of internal components prior to return-
ing them to clients. Whether or not your class is immutable, you should think
twice before returning a reference to an internal component that is mutable.
Chances are you should be returning a defensive copy. Also, it is critical to
remember that nonzero-length arrays are always mutable. Therefore you should
always make a defensive copy of an internal array before returning it to a client.
Alternatively, you could return an immutable view of the array to the user. Both of
these techniques are shown in Item 12.

Arguably, the real lesson in all of this is that you should, where possible, use
immutable objects as components of your objects so that you that don’t have to
worry about defensive copying (Item 13). In the case of our Period example, it is
worth pointing out that experienced programmers often use the primitive long
returned by Date.getTime() as an internal time representation rather than using a
Date object reference. They do this primarily because Date is mutable.

It is not always appropriate to make a defensive copy of a mutable parameter
before integrating it into an object. There are some methods and constructors
whose invocation indicates an explicit handoff of the object referenced by a
parameter. When invoking such a method, the client promises that it will no longer
modify the object directly. A method or constructor that expects to take control of
a client-provided mutable object must make this clear in its documentation. 

Classes containing methods or constructors whose invocation indicates a
transfer of control cannot defend themselves against malicious clients. Such
classes are acceptable only when there is mutual trust between the class and its cli-
ent or when damage to the class’s invariants would harm no one but the client. An
example of the latter situation is the wrapper class pattern (Item 14). Depending
on the nature of the wrapper class, the client could destroy the class’s invariants
by directly accessing an object after it has been wrapped, but this typically would
harm only the client.

methods.fm  Page 125  Tuesday, May 15, 2001  9:02 AM



CHAPTER 6    METHODS126

Item 25: Design method signatures carefully

This item is a grab bag of API design hints that don’t quite deserve items of their
own. Taken together, they’ll help make your API easier to learn and use and less
prone to errors.

Choose method names carefully. Names should always obey the standard
naming conventions (Item 38). Your primary goal should be to choose names that
are understandable and consistent with other names in the same package. Your
secondary goal should be to choose names consistent with the broader consensus,
where it exists. When in doubt, look to the Java library APIs for guidance. While
there are plenty of inconsistencies—inevitable, given the size and scope of the
libraries—there is also consensus. An invaluable resource is Patrick Chan’s The
Java Developers Almanac [Chan00], which contains the method declarations for
every single method in the Java platform libraries, indexed alphabetically. If, for
example, you were wondering whether to name a method remove or delete, a
quick look at the index of this book would tell you that remove was the obvious
choice. There are hundreds of methods whose names begin with remove and a
small handful whose names begin with delete.

Don’t go overboard in providing convenience methods. Every method
should “pull its weight.” Too many methods make a class difficult to learn, use,
document, test, and maintain. This is doubly true for interfaces, where too many
methods complicate life for implementors as well as for users. For each action
supported by your type, provide a fully functional method. Consider providing a
“shorthand” for an operation only when it will be used frequently. When in
doubt, leave it out.

Avoid long parameter lists. As a rule, three parameters should be viewed as a
practical maximum, and fewer is better. Most programmers can’t remember
longer parameter lists. If many of your methods exceed this limit, your API won’t
be usable without constant reference to its documentation. Long sequences of
identically typed parameters are especially harmful. Not only won’t the users
of your API be able to remember the order of the parameters, but when they trans-
pose parameters by mistake, their programs will still compile and run. They just
won’t do what their authors intended.

There are two techniques for shortening overly long parameter lists. One is to
break the method up into multiple methods, each of which requires only a subset
of the parameters. If done carelessly, this can lead to too many methods, but it can
also help reduce the method count by increasing orthogonality. For example, con-
sider the java.util.List interface. It does not provide methods to find the first

methods.fm  Page 126  Tuesday, May 15, 2001  9:02 AM



ITEM 25: DESIGN METHOD SIGNATURES CAREFULLY 127

or last index of an element in a sublist, both of which would require three parame-
ters. Instead it provides the subList method, which takes two parameters and
returns a view of a sublist. This method can be combined with the indexOf or
lastIndexOf methods, each of which has a single parameter, to yield the desired
functionality. Moreover, the subList method can be combined with any other
method that operates on a List instance to perform arbitrary computations on
sublists. The resulting API has a very high power-to-weight ratio.

A second technique for shortening overly long parameter lists is to create
helper classes to hold aggregates of parameters. Typically these helper classes are
static member classes (Item 18). This technique is recommended if a frequently
occurring sequence of parameters is seen to represent some distinct entity. For
example suppose you are writing a class representing a card game, and you find
yourself constantly passing a sequence of two parameters representing a card’s
rank and its suit. Your API, as well as the internals of your class, would probably
be improved if you added a helper class to represent a card and replaced every
occurrence of the parameter sequence with a single parameter of the helper class.

For parameter types, favor interfaces over classes. Whenever an appropri-
ate interface to define a parameter exists, use it in favor of a class that implements
the interface. For example, there is no reason ever to write a method that takes
Hashtable on input—use Map instead. This lets you pass in a Hashtable, a Hash-
Map, a TreeMap, a submap of a TreeMap, or any Map implementation yet to be writ-
ten. By using a class instead of an interface, you restrict your client to a particular
implementation and force an unnecessary and potentially expensive copy opera-
tion if the input data happen to exist in some other form.

Use function objects (Item 22) judiciously. There are some languages, nota-
bly Smalltalk and the various Lisp dialects, that encourage a style of program-
ming rich in objects that represent functions to be applied to other objects.
Programmers with experience in these languages may be tempted to adopt a simi-
lar style in the Java programming language, but it isn’t a terribly good fit. The eas-
iest way to create a function object is with an anonymous class (Item 18), but even
that involves some syntactic clutter and has limitations in power and performance
when compared to inline control constructs. Furthermore, the style of program-
ming wherein you are constantly creating function objects and passing them from
method to method is out of the mainstream, so other programmers will have a dif-
ficult time understanding your code if you adopt this style. This is not meant to
imply that function objects don’t have legitimate uses; they are essential to many
powerful design patterns, such as Strategy [Gamma98, p. 315] and Visitor

methods.fm  Page 127  Tuesday, May 15, 2001  9:02 AM



CHAPTER 6    METHODS128

[Gamma98, p. 331]. Rather, function objects should be used only with good rea-
son.

methods.fm  Page 128  Tuesday, May 15, 2001  9:02 AM



ITEM 26: USE OVERLOADING JUDICIOUSLY 129

Item 26: Use overloading judiciously

Here is a well-intentioned attempt to classify collections according to whether they
are sets, lists, or some other kind of collections:

// Broken - incorrect use of overloading!
public class CollectionClassifier {
    public static String classify(Set s) {
        return "Set";
    }

    public static String classify(List l) {
        return "List";
    }

    public static String classify(Collection c) {
        return "Unknown Collection";
    }

    public static void main(String[] args) {
        Collection[] tests = new Collection[] {
            new HashSet(),          // A Set
            new ArrayList(),        // A List
            new HashMap().values()  // Neither Set nor List
        };

        for (int i = 0; i < tests.length; i++)
            System.out.println(classify(tests[i]));
    }
}

You might expect this program to print “Set,” followed by “List” and
“Unknown Collection,” but it doesn’t; it prints out “Unknown Collection” three
times. Why does this happen? Because the classify method is overloaded, and
the choice of which overloading to invoke is made at compile time. For all
three iterations of the loop, the compile-time type of the parameter is the same:
Collection. The run-time type is different in each iteration, but this does not
affect the choice of overloading. Because the compile-time type of the parameter
is Collection, the only applicable overloading is the third one, classify(Col-
lection), and this overloading is invoked in each iteration of the loop.

The behavior of this program is counterintuitive because selection among
overloaded methods is static, while selection among overridden methods is
dynamic. The correct version of an overridden method is chosen at run time,

methods.fm  Page 129  Tuesday, May 15, 2001  9:02 AM



CHAPTER 6    METHODS130

based on the run-time type of the object on which the method is invoked. As a
reminder, a method is overridden when a subclass contains a method declaration
with exactly the same signature as a method declaration in an ancestor. If an
instance method is overridden in a subclass and this method is invoked on an
instance of the subclass, the subclass’s overriding method executes, regardless of
the compile-time type of the subclass instance. To make this concrete, consider
the following little program:

class A {
    String name() { return "A"; }
}

class B extends A {
    String name() { return "B"; }
}

class C extends A {
    String name() { return "C"; }
}

public class Overriding {
    public static void main(String[] args) {
        A[] tests = new A[] { new A(), new B(), new C() };

        for (int i = 0; i < tests.length; i++)
            System.out.print(tests[i].name());
    }
}

The name method is declared in class A and overridden in classes B and C. As
you would expect, this program prints out “ABC” even though the compile-time
type of the instance is A in each iteration of the loop. The compile-time type of an
object has no effect on which method is executed when an overridden method is
invoked; the “most specific” overriding method always gets executed. Compare
this to overloading, where the run-time type of an object has no effect on which
overloading is executed; the selection is made at compile time, based entirely on
the compile-time types of the parameters.

In the CollectionClassifier example, the intent of the program was to dis-
cern the type of the parameter by dispatching automatically to the appropriate
method overloading based on the run-time type of the parameter, just as the name
method did in the “ABC” example. Method overloading simply does not provide

methods.fm  Page 130  Tuesday, May 15, 2001  9:02 AM



ITEM 26: USE OVERLOADING JUDICIOUSLY 131

this functionality. The way to fix the program is to replace all three overloadings
of classify with a single method that does an explicit instanceof test:

public static String classify(Collection c) {
   return (c instanceof Set ? "Set" :
           (c instanceof List ? "List" : "Unknown Collection"));
}

Because overriding is the norm and overloading is the exception, overriding
sets people’s expectations for the behavior of method invocation. As demonstrated
by the CollectionClassifier example, overloading can easily confound these
expectations. It is bad practice to write code whose behavior would not be obvious
to the average programmer upon inspection. This is especially true for APIs. If the
typical user of an API does not know which of several method overloadings will
get invoked for a given set of parameters, use of the API is likely to result in
errors. These errors will likely manifest themselves as erratic behavior at run time,
and many programmers will be unable to diagnose them. Therefore you should
avoid confusing uses of overloading.

Exactly what constitutes a confusing use of overloading is open to some
debate. A safe, conservative policy is never to export two overloadings with
the same number of parameters. If you adhere to this restriction, programmers
will never be in doubt as to which overloading applies to any set of parameters.
This restriction is not terribly onerous because you can always give methods dif-
ferent names instead of overloading.

For example, consider the class ObjectOutputStream. It has a variant of its
write method for every primitive type and for several reference types. Rather than
overloading the write method, these variants have signatures like writeBool-
ean(boolean), writeInt(int), and writeLong(long). An added benefit of this
naming pattern, when compared to overloading, is that it is possible to provide
read methods with corresponding names, for example, readBoolean(), read-
Int(), and readLong(). The ObjectInputStream class does, in fact, provide
read methods with these names.

For constructors, you don’t have the option of using different names; multiple
constructors for a class are always overloaded. You do, in some cases, have the
option of exporting static factories instead of constructors (Item 1), but that isn’t
always practical. On the bright side, with constructors you don’t have to worry
about interactions between overloading and overriding, as constructors can’t be
overridden. Because you’ll probably have occasion to export multiple constructors
with the same number of parameters, it pays to know when it is safe to do so.

methods.fm  Page 131  Tuesday, May 15, 2001  9:02 AM



CHAPTER 6    METHODS132

Exporting multiple overloadings with the same number of parameters is
unlikely to confuse programmers if it is always clear which overloading will apply
to any given set of actual parameters. This is the case when at least one corre-
sponding formal parameter in each pair of overloadings has a “radically different”
type in the two overloadings. Two types are radically different if it is clearly
impossible to cast an instance of either type to the other. Under these circum-
stances, which overloading applies to a given set of actual parameters is fully
determined by the run-time types of the parameters and cannot be affected by their
compile-time types, so the major source of confusion evaporates.

For example, ArrayList has one constructor that takes an int and a second
constructor that takes a Collection. It is hard to imagine any confusion over
which of these two constructors will be invoked under any circumstances because
primitive types and reference types are radically different. Similarly, BigInteger
has one constructor that takes a byte array and another that takes a String; this
causes no confusion. Array types and classes other than Object are radically dif-
ferent. Also, array types and interfaces other than Serializable and Cloneable
are radically different. Finally, Throwable, as of release 1.4, has one constructor
that takes a String and another takes a Throwable. The classes String and
Throwable are unrelated, which is to say that neither class is a descendant of the
other. It is impossible for any object to be an instance of two unrelated classes, so
unrelated classes are radically different.

There are a few additional examples of pairs of types that can’t be converted
in either direction [JLS, 5.1.7], but once you go beyond these simple cases, it can
become very difficult for the average programmer to discern which, if any, over-
loading applies to a set of actual parameters. The specification that determines
which overloading is selected is complex, and few programmers understand all of
its subtleties [JLS, 15.12.1-3].

Occasionally you may be forced to violate the above guidelines when retrofit-
ting existing classes to implement new interfaces. For example, many of the value
types in the Java platform libraries had “self-typed” compareTo methods prior to
the introduction of the Comparable interface. Here is the declaration for String’s
original self-typed compareTo method:

    public int compareTo(String s);

methods.fm  Page 132  Tuesday, May 15, 2001  9:02 AM



ITEM 26: USE OVERLOADING JUDICIOUSLY 133

With the introduction of the Comparable interface, all of the these classes
were retrofitted to implement this interface, which involved adding a more general
compareTo method with this declaration:

    public int compareTo(Object o);

While the resulting overloading is clearly a violation of the above guidelines,
it causes no harm as long as both overloaded methods always do exactly the same
thing when they are invoked on the same parameters. The programmer may not
know which overloading will be invoked, but it is of no consequence as long as
both methods return the same result. The standard way to ensure this behavior is
to have the more general overloading forward to the more specific:

    public int compareTo(Object o) {
        return compareTo((String) o);
    }

A similar idiom is sometimes used for equals methods:

    public boolean equals(Object o) {
        return o instanceof String && equals((String) o);
    }

This idiom is harmless and may result in slightly improved performance if the
compile-time type of the parameter matches the parameter of the more specific
overloading. That said, it probably isn’t worth doing as a matter of course (Item
37).

While the Java platform libraries largely adhere to the advice in this item,
there are a number of places where it is violated. For example, the String class
exports two overloaded static factory methods, valueOf(char[]) and val-
ueOf(Object), that do completely different things when passed the same object
reference. There is no real justification for this, and it should be regarded as an
anomaly with the potential for real confusion.

To summarize, just because you can overload methods doesn’t mean you
should. You should generally refrain from overloading methods with multiple sig-
natures that have the same number of parameters. In some cases, especially where
constructors are involved, it may be impossible to follow this advice. In that case,
you should at least avoid situations where the same set of parameters can be
passed to different overloadings by the addition of casts. If such a situation cannot
be avoided, for example because you are retrofitting an existing class to imple-

methods.fm  Page 133  Tuesday, May 15, 2001  9:02 AM



CHAPTER 6    METHODS134

ment a new interface, you should ensure that all overloadings behave identically
when passed the same parameters. If you fail to do this, programmers will not be
able to make effective use of the overloaded method or constructor, and they won’t
understand why it doesn’t work.

methods.fm  Page 134  Tuesday, May 15, 2001  9:02 AM



ITEM 27: RETURN ZERO-LENGTH ARRAYS, NOT NULLS 135

Item 27: Return zero-length arrays, not nulls

It is not uncommon to see methods that look something like this:

private List cheesesInStock = ...;

/**
 * @return an array containing all of the cheeses in the shop,
 *         or null if no cheeses are available for purchase.
 */
public Cheese[] getCheeses() {
    if (cheesesInStock.size() == 0)
        return null;
    ...
}

There is no reason to make a special case for the situation where no cheeses
are available for purchase. Doing so requires extra code in the client to handle the
null return value, for example:

Cheese[] cheeses = shop.getCheeses();
if (cheeses != null &&
    Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
    System.out.println("Jolly good, just the thing.");

instead of:

if (Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
    System.out.println("Jolly good, just the thing.");

This sort of circumlocution is required in nearly every use of a method that
returns null in place of a zero length array. It is error prone, as the programmer
writing the client might forget to write the special-case code to handle a null
return. Such an error may go unnoticed for years, as such methods usually return
one or more objects. Less significant, but still worthy of note, returning null in
place of a zero length array also complicates the array-returning method itself.

It is sometimes argued that a null return value is preferable to a zero-length
array because it avoids the expense of allocating the array. This argument fails on
two counts. First, it is inadvisable to worry about performance at this level unless
profiling has shown that the method in question is a real contributor to perfor-
mance problems (Item 37). Second, it is possible to return the same zero-length
array from every invocation that returns no items because zero-length arrays are

methods.fm  Page 135  Tuesday, May 15, 2001  9:02 AM



CHAPTER 6    METHODS136

immutable and immutable objects may be shared freely (Item 13). In fact, this is
exactly what happens when you use the standard idiom for dumping items from a
collection into a typed array:

private List cheesesInStock = ...;

private final static Cheese[] NULL_CHEESE_ARRAY = new Cheese[0];

/**
 * @return an array containing all of the cheeses in the shop.
 */
public Cheese[] getCheeses() {
  return (Cheese[]) cheesesInStock.toArray(NULL_CHEESE_ARRAY);
}

In this idiom, a zero-length array constant is passed to the toArray method to
indicate the desired return type. Normally the toArray method allocates the
returned array, but if the collection is empty, it fits in the input array, and the spec-
ification for Collection.toArray(Object[]) guarantees that the input array will
be returned if it is large enough to hold the collection. Therefore the idiom never
allocates a zero-length array but instead reuses the “type-specifier constant.”

In summary, there is no reason ever to return null from an array-valued
method instead of returning a zero-length array. This idiom is likely a hold-
over from the C programming language, in which array lengths are returned sepa-
rately from actual arrays. In C, there is no advantage to allocating an array if zero
is returned as the length.

methods.fm  Page 136  Tuesday, May 15, 2001  9:02 AM



ITEM 28: WRITE DOC COMMENTS FOR ALL EXPOSED API ELEMENTS 137

Item 28: Write doc comments for all exposed API elements

If an API is to be usable, it must be documented. Traditionally API documentation
was generated manually, and keeping documentation in sync with code was a big
chore. The Java programming environment eases this task with a utility called
Javadoc. This utility generates API documentation automatically from source code
in conjunction with specially formatted documentation comments, more commonly
known as doc comments. The Javadoc utility provides an easy and effective way to
document your APIs, and its use is widespread.

If you are not already familiar with the doc comment conventions, you should
learn them. While these conventions are not part of the Java programming lan-
guage, they constitute a de facto API that every programmer should know. The
conventions are defined The Javadoc Tool Home Page [Javadoc-b].

To document your API properly, you must precede every exported class,
interface, constructor, method, and field declaration with a doc comment,
subject to one exception discussed at the end of this item. In the absence of a doc
comment, the best that Javadoc can do is to reproduce the declaration as the sole
documentation for the affected API element. It is frustrating and error-prone to
use an API with missing documentation comments. To write maintainable code,
you should also write doc comments for unexported classes, interfaces, construc-
tors, methods, and fields.

The doc comment for a method should describe succinctly the contract
between the method and its client. With the exception of methods in classes
designed for inheritance (Item 15), the contract should say what the method does
rather than how it does its job. The doc comment should enumerate all of the
method’s preconditions, which are the things that have to be true in order for a cli-
ent to invoke it, and its postconditions, which are the things that will be true after
the invocation has completed successfully. Typically, preconditions are described
implicitly by the @throws tags for unchecked exceptions; each unchecked excep-
tion corresponds to a precondition violation. Also, preconditions can be specified
along with the affected parameters in their @param tags.

In addition to preconditions and postconditions, methods should document
any side effects. A side effect is an observable change in the state of the system
that is not obviously required to achieve the postcondition. For example, if a
method starts a background thread, the documentation should make note of it.
Finally, documentation comments should describe the thread safety of a class, as
discussed in Item 52.

methods.fm  Page 137  Tuesday, May 15, 2001  9:02 AM



CHAPTER 6    METHODS138

To describe its contract fully, the doc comment for a method should have a
@param tag for every parameter, a @return tag unless the method has a void return
type, and a @throws tag for every exception thrown by the method, whether
checked or unchecked (Item 44). By convention the text following a @param tag or
@return tag should be a noun phrase describing the value represented by the
parameter or return value. The text following a @throws tag should consist of the
word “if,” followed by a noun phrase describing the conditions under which the
exception is thrown. Occasionally, arithmetic expressions are used in place of
noun phrases. All of these conventions are illustrated in the following short doc
comment, which comes from the List interface:

/**
 * Returns the element at the specified position in this list.
 *
 * @param  index index of element to return; must be
 *         nonnegative and less than the size of this list.
 * @return the element at the specified position in this list.
 * @throws IndexOutOfBoundsException if the index is out of range
 *         (<tt>index &lt; 0 || index &gt;= this.size()</tt>).
 */
Object get(int index);

Notice the use of HTML metacharacters and tags in this doc comment. The
Javadoc utility translates doc comments into HTML, and arbitrary HTML ele-
ments contained in doc comments end up in the resulting HTML document. Occa-
sionally programmers go so far as to embed HTML tables in their doc comments,
although this is uncommon. The most commonly used tags are <p> to separate
paragraphs; <code> and <tt>, which are used for code fragments; and <pre>,
which is used for longer code fragments. 

The <code> and <tt> tags are largely equivalent. The <code> tag is more
commonly used and, according to the HTML 4.01 specification, is generally pref-
erable because <tt> is a font style element. (The use of font style elements is dis-
couraged in favor of style sheets [HTML401].) That said, some programmers
prefer <tt> because it is shorter and less intrusive.

Don’t forget that escape sequences are required to generate HTML metachar-
acters, such as the less than sign (<), the greater than sign (>), and the ampersand
(&). To generate a less than sign, use the escape sequence “&lt;”. To generate a
greater than sign, use the escape sequence “&gt;”. To generate an ampersand, use
the escape sequence “&amp;”. The use of escape sequences is demonstrated in the
@throws tag of the above doc comment.

methods.fm  Page 138  Tuesday, May 15, 2001  9:02 AM



ITEM 28: WRITE DOC COMMENTS FOR ALL EXPOSED API ELEMENTS 139

Finally, notice the use of word “this” in the doc comment. By convention, the
word “this” always refers to the object on which the method is invoked when it is
used in the doc comment for an instance method.

The first sentence of each doc comment becomes the summary description of
the element to which the comment pertains. The summary description must stand
on its own to describe the functionality of the entity it summarizes. To avoid con-
fusion, no two members or constructors in a class or interface should have the
same summary description. Pay particular attention to overloadings, for which it is
often natural to use the same first sentence in a prose description.

Be careful not to include a period within the first sentence of a doc comment.
If you do, it will prematurely terminate the summary description. For example, a
documentation comment that began with “A college degree, such as B.S.,
M.S., or Ph.D.” would result in a summary description of “A college degree,
such as B.” The best way avoid this problem is to avoid the use of abbreviations
and decimal fractions in summary descriptions. It is, however, possible to include
a period in a summary description by replacing the period with its numeric encod-
ing, “&#46;”. While this works, it doesn’t make for pretty source code:

/**
 * A college degree, such as B&#46;S&#46;, M&#46;S&#46; or
 * Ph&#46;D.
 */
public class Degree { ... }

It is somewhat misleading to say that the summary description is the first sen-
tence in a doc comment. Convention dictates that it should seldom be a complete
sentence. For methods and constructors, the summary description should be a verb
phrase describing the action performed by the method. For example,

• ArrayList(int initialCapacity)—Constructs an empty list with the spec-
ified initial capacity.

• Collection.size()—Returns the number of elements in this collection.

For classes, interfaces, and fields, the summary description should be a noun
phrase describing the thing represented by an instance of the class or interface or
by the field itself. For example,

• TimerTask—A task that can be scheduled for one-time or repeated execution
by a Timer.

methods.fm  Page 139  Tuesday, May 15, 2001  9:02 AM



• Math.PI—The double value that is closer than any other to pi, the ratio of the
circumference of a circle to its diameter.

The doc comment conventions described in this item are sufficient to get by,
but there are many others. There are several style guides for writing doc comments
[Javadoc-a, Vermeulen00]. Also, there are utilities to check adherence to these
rules [Doclint].

Since release 1.2.2, Javadoc has had the ability to “automatically reuse” or
“inherit” method comments. If a method does not have a doc comment, Javadoc
searches for the most specific applicable doc comment, giving preference to inter-
faces over superclasses. The details of the search algorithm can be found in The
Javadoc Manual.

This means that classes can now reuse the doc comments from interfaces they
implement, rather than copying these comments. This facility has the potential to
reduce or eliminate the burden of maintaining multiple sets of nearly identical doc
comments, but it does have a limitation. Doc-comment inheritance is all-or-noth-
ing: the inheriting method cannot modify the inherited doc comment in any way. It
is not uncommon for a method to specialize the contract inherited from an inter-
face, in which case the method really does need its own doc comment.

A simple way to reduce the likelihood of errors in documentation comments is
to run the HTML files generated by Javadoc through an HTML validity checker.
This will detect many incorrect uses of HTML tags, as well as HTML metacharac-
ters that should have been escaped. Several HTML validity checkers are available
for download, such as weblint [Weblint].

One caveat should be added concerning documentation comments. While it is
necessary to provide documentation comments for all exported API elements, it is
not always sufficient. For complex APIs consisting of multiple interrelated
classes, it is often necessary to supplement the documentation comments with an
external document describing the overall architecture of the API. If such a docu-
ment exists, the relevant class or package documentation comments should
include a link to it.

To summarize, documentation comments are the best, most effective way to
document your API. Their use should be considered mandatory for all exported
API elements. Adopt a consistent style adhering to standard conventions. Remem-
ber that arbitrary HTML is permissible within documentation comments and that
HTML metacharacters must be escaped.

methods.fm  Page 140  Tuesday, May 15, 2001  9:02 AM


